MPM SOFTWARE ARCHITECTURE

By
Irwin Greenwald & Wendell Shultz

PREFACE

MPM is a Mulh Processor Monitor for Sigma 9. It is also a mulfi-programrﬁing monitor

_designed to serve interactive time~sharing, batch, remote batch, and remote data collection
_in asingle, integrated system. It could also be described as a file~based, communications-

, :6rieni’ed, high-availability system for multi~programming batch and fime—sharing needs,:

It is assumed that the reader is generally familiar with the concepts described above and is
also familiar with the needs, justification, and the advantages of multi-programming

operating systems and of ﬁme-'sharing. Therefore, the question vof inferest is: how does

MPM differ from other systems designed for some (or all) of the above?

This is not an easy‘ question. One way to answer it is to examine all of the external commands
and service calls available fo users of the system, and to study the internal design and imple-
mentation of the system. But this is a full time job for systems programmers, and may often
leave questions about eufficiency, expandability, mo’dularif}t, reliability, and ease of use

still unanswered.

Another approach is to select some of the key design ideas for the system and describe them
in coordinated, general terms. This could be called describing the "structure™ and the -

"style" of the system ~- or the system "architecture". This is the approach taken here.

A word of caution is required, however, This is viewing the sysfemvfrom only one angle.
Details still make or break a system, but since architecture is the Hlimiting” factor for fhe sysfem, ‘
and is much less easily changed than details, it is the place to'start, Another danger i is
that in descrlblng the architecture in a static document, some of the interdependencies or

_ reasons will be lost or unclear. As much mofiv@ﬂon as possible is included in this do?:Jmenf,
regarding "why" some things are done in a particular way; in fact this is really a discussion of
"what" and "why" rather than "how" things are done in MPM. Since motivational retsons are
very imporfaﬁf and often undocumented, this should be of value to anyone studying M M.
Many of the features of MPM software architecture parallel Sigma 9 hardware archlfecfure,

and. the parallels will be shown. o ' : SN ~ \
LT i

- -M2-
MEMORY MANAGEMENT

Perhaps the most fundamental key to understanding MPM is to understand memory management.
Since all users and all of MPM but a very small percentage of the resident monitor execute-
‘mapped, in virtual memory, this discussion on memory management will be concerned ex- -

clusively with virtual memory management. Forthcoming sections on the resident monitor

- -

will discuss real memory and real extended memory.

It is assumed that the reader is familiar with Sigma 7 hardware memory mapping (which‘ is
the same, to the mapped programs, cs.Sigma 9 mapping). The Sigma 7/9 hardware memory
mapping is very fundamental to the whole design of MPM, If the virtual memory were a
dffferenf size, or if there were two-level mapping, or if there were variable sized pages or
a different sized page, or if there were no mapping at all, MPM would be designed very

- differently. The mapping hard.v.vare is used for a lot more than simply. relocation, MPM is
designed dround a fotal concept of virtual memory programming, which would be impossible
without special hardware (including access protection) similar to that on Sigma 7/9. This
will become more and more clear as the document proceéds, but its significance cannot be

over emphasized. -~ | '

Virtual Memory Allocation

The first thing to note is what we can call configuration independence: every task has

128K words of contiguous virtual memory available, regardless of the size of the machine

or of other users in the system. This eliminates a lot of relocation problems for all users

and simplifies system generation for the system itself and for standard Iangucgé processors -
and system utilities. Some of this memory is available directly to the task, and some is

used for services which the task needs. This latter cannot be modified and used directly

by the task, However, regardless of other users or the size\ of d configuration, this remains

constant. Figure 1 shows the fundamental allocation of virtual memory.

o - 64K 80K 96K | 128K
'Task ' Task ~ 'Phantom Sysi‘emI MPM Service l
Control _ ‘ ‘ ques» Librqry Routines o
| Block : ' S ~ —
| Task Virtual Memory (TVM A System Virtual Memory (SVM)

FIGURE 1: Virtual Memory Allocation |

TheTCB (Task- Contiol B'locA:k, ar control -inforfnafion such as registers and status and map
bpomfers) is the first page of wrfucl memory. _This must occupy virtual page zero in order to
permlf users to take some h’aps directly. . (See the section.on Event Control for more detans).
.The.remdinder of the ‘lower 64K is available For the user, in any way he chooses, The lower
84K was chosen instead of the upper to permu beﬁer use of the Interpret instruction for
langucxge ‘processors,, or o’rher addressing cons:dercx’nons lnvolvmg 16-bl’r address f“elds, und

-since wsers like io. beg.m at low memory.

“'l:he ;:req from 64K to 80K is available for system use on behalf of the user, and is called
phantom pages (PP). This is a fairly large amount of virtual space, but is used for such

thngs as 1/O blocking/deblocking, file directory pages, data control blocks, temp stacks,
loader tables, debug tables, symbol tables, and other system InFor_rhaﬁon on an as-needed
basis. By requiring users to give LAjp'parf of their virtual memory for these things only when -
needed, more space would be cﬂl‘lrecfly;,a,\kgilable for ys_efs,mjjoﬂ_/s_/ever, with the fast overlay
techniques described ’be'lpw, 64K seems moré_ than enough for almost all users. And fixed
allocation is easier. If MPM were designed primarily for assembly language programmers, ,
the thﬂle concept of phantom pages would be :unngcessdry. But MPM s ﬂes’ighed primarilly
for users of FORTRAN, COBOL, BASIC, and other highEr-level languages. For these users,
"it ds difficult iF not lmpOSSIble to specify 1/0O blocking buffer space and file directory space,..
dyncmmall By using phcxn’rom pages at execufion hme,, 5 neeﬂed the wser's progrqmm ing
is gredﬂy simplified ~~ he does not even need to know dbout ’r'he phantom pages and these

i rec.fory ‘t’hmgs.. Furfhermore,, the "hinding" ’mme is dellayed until execufion time rather
than fixed ot assembly or - cczmphle fime or even at link edit fime; #his means filles can be
1mex;ger:l or reassigned or grow Yarger or smd l'lar {and thus change 'Hloz:kvmg and directory meeds)
~withotit changes to wser programs @r wsar space consndarahom‘. This wlso means theit the some
siize program can be executed with or- without debugging. Tt dlso means ‘fhd’r BIOT MESSTYES
‘o ‘a 'user can specify errar location fin terms of source program llobels on @ subroutine basis
rather than wsing the "hexadecimal locations of the relocated program, since the internd-
symbol cf'chonary c:cxn be kept in The phantom pages during execution, if deswed 11‘ elilso
‘means that there T is no such fhing as 1/O buffer pool-or symbol table Dver’l’low, since MPM
('can {and wnll) use overlays in these phantom pages to grow or shrink as execution time needs

;A_,,ch_cmge',‘ .dependxng an the size of a task, -

-M4-

One of the best parts of tge concept of phantom pages is efficiency, in addition to

flex:bthy and ease of use. It is very important to remember that with virtual memory,

an’ unused .virtual page is free -~ it takes no real memory and no swap time. This is part

of the concept of virtual memory programming. Furthermore, using the sfandardsegmenfcﬁon
management .(desérib‘ed beléw), symbol tables and directory pages are "deactivated"” when ; 3
not actually needed, and so most of the time take swapping RAD space 5Uf no real memory

-dnd no swap time, (Virtual memory programming without swapping is much less powerful.)

The region from 80K to 96K is reserved for the sysfem library (SL). The system .librdrvy is

"read and execute” to the user task, and is sharﬁble among several users. However, all

or part of this library can be different for different users, and can be fixed dynamically or |
at syffém loading (later than system generation). Generally, the File Management blocking
and 'd‘eblocking routines are in this space, and so is Debug and the Line Editor, However,
users can include a math library, a FORTRAN run-time, or a data management system here

if desired —- and each task can select which segments to use. It is also possible to substitute
a different editor or debug, very- easily, by changing this system library. Again, if not used,v

this space is reserved in virtual memory but unused in real memory, for this user.

The entire region from 0 to 96K is called Task Virtual Memory (TVM) and is "switched” eoéh
‘time one task is suspended (or terminates) and a new task dispatched. Of course, if a page

-~
-

is not used, it can be flagged "no access” and no map address’is needed.

The region from 96K to 128K is called System Virtual Memory (SVM) and is independent of
the particular task in progress. This region does not change when tasks are switched, and
normally changes only during a hardware reconfiguration or system loading operation. This
minimizes system overhead for dispcﬂching and scheduling, and also provides a guarahfeed area
for use by syéfém interrupt and trap routines, independent of the particular user task executing.
(That is, MPM does not chcnge any of the map on most mferrupfs, mcludmg I/O and

‘communications interrupts.)

-M5-

Also mcluded in SVM, in “addition to 1/O interrupt routines, are all of fhe immediate service
’ ‘rou’rmes i’hcf the user can call (by CALx instructions) from his program. In addition, a Iarge
body of sysrem subroutines that are parf of the resident monitor operate in SVM (such as
schedulfrré and swapping roufines and the 1/O Control System). No variable length or user-

dependenf'fdblesore in SVM, but are located elsewhere. "

Sofrwqre Segmenfchon ,

The precnse mefhod of confrolhng fhe locchon of data or instructions in virtual memory

(either TVM or SVM) is by means of a software segmentation scheme, as follows: The active
memory at any time is composed of a series of segments, under software control. Each seg-
ment consists of an integral number of pages, from one to a maximum of 127. These pages
within a segment are. conhguous and dense, but there may be * gaps" in virtual memory
‘between segments. Each segment is built by the lmkage editor from one or more relocatable
object modules (ROM's) or library routines or "reserves”. Each segment is given a name and

a virtual memory starting location at linkage edit hme, as well as a |eng’rh This name,
virtual location, and length remain with the segment permanently. Each segmenf must, of
course, begin on a page boundary. Segments may contain data, instructions, or reserved
space -~ or a combination. The segment is the smallest "sharable” unit of memory (sharable .
between rcsks). Several segments may begin at the same virtual memory address, if desired,
and if so will in effect be "overlay” segments for each other; only one of these may be active- v
at any one time, obviously, and this "acfi\;e" one will be represented in the actual hardware
map at execution time. Because each segment is independent of other segments, any sort of
overlay structure may be built -~ the user is not limited to a conventional tree structure. A |
maximum of 64 segments may be ccfive‘ for a task, and up to 255 segments may be defined for
a task at one time. | »

2

~ The reasons for defining these variable length software segments are many. Firs’r, fhe hardware :
page size of 512 words is very good for memory allocation and relocation purploses, b{Jf is foo
large for some profec’red control blocks and too small for most sharing and program definition
needs. Therefore, 'rhe overhead for program defmmon, for sharing, and for overlays s reduced

by controlling these on a segmenr basis, rather than on an individual page basns It is very easy

to "name" segments, and then activate them or overlay them as required.

M6~

- To;v’itlfl-m’r.mte‘ the.wse of segments, a simple, non-overlaid FORTRAN user program would aopeer
s follows: '.

-

Memory Layouf

P] m -///////////// wc
T Mam Program -~ Unused Space R - Blank Common
A tmd Subrouhnes o RS R '

e

FIGURE 2: ASimple Use of Segments. S

: Thi§ consisfsb of two segments, "*M' and 'BC', pl.us phantom pdge segmeofs‘and’ syéfem liBfaky o
- (nof shown), This is built au’romahcally by the linkage edlfor, cmd the user never needs fo be
aware. ofsegmenfs unless he wants to perform some overlcys or share some'rhmg One of fhe
obvuous qdvcn’rages of segments in the total scheme of vm‘uol memory programmmg is for
' deflnmg only necessary pages; the unused pcges in the mlddle of task virtual memory do not
cost anything, are convenient to allocate (as for the lmkcxge editor to relocafe common cmcl

. User program sepc:rcfely), and would not be possible without a map.

A shared ..EO_RII'RAN v compiler migiwf oppear as in Figure 3:

64K

v c ‘
0 | S ! — '
: - : I T1 S1
TaB - RO : ‘
S——— . P2 ,
. 1
) 4
R P3 Y
J e iz

FIGURE 3: Complex Use of Segments

- In F'gureB RQ is the root segment, Pl is pass 1 code, P2 is pass 2 code, P3 is pass 3 code,
T s t’rampsgpme, and St is symbol table space. Segments RO, P1, P2, and P3 are reaa and
execute™ @mﬂ}y and are shared by cx” users of FORTRAN, and P1, P2, and P3 overlay each other
fim mm‘i‘ml mamory. Segments T1 and S1 are writable segmenfs and are private for each user V

' pmgrm bamg complled (Nofe that P1, P2 and P3 probcbly all exist in real memory, non-

- 'overlmd if ﬁqne compller is heavnly used.)

-M7-

There are a number of distinct activity states and transitions possible for a segment. The

activity states for a segment are:

ACTIVE-HIGH

ACTIVE-LOW

SEMI-ACTIVE-HIGH
' SEMI-ACTIVE-LOW

INACTIVE

DEFINED

The segment exists in real high speed memory, on

the swapping RAD, and in the map‘ if the task is

active.

Same as ACTIVE-HIGH, except uses LCS instead of

high speed memory.

Same as ACTIVE-HIGH except not in map.

Same as ACTIVE-LOW except not in map.

Segment éxisfs on the swapping RAD only, and is not

brought into real memory with the fdsk, and hence,

‘ ccnno‘t.be in the mcp.-

Segment contents do not exist in real memory or on
the swapping RAD, but the segment name and des{cripfofs

exist; for example, used for Blank Common.

It is possible for pages of a segment to be in different states, but generally they are all the

same. (Page calls are used for this, anytime after the segment is defined.) -

The transition operations for segments are:

ACTIVATE-HIGH (Segment name)
ACTIVATE-LOW (Segment name =
SEMI-ACTIVATE-HIGH (Segment name)
SEMI-ACTIVATE-LOW (Segment name)

DEACTIVATE (Segment name
ERASE (Segment name)
DEFINE (Segrﬁe‘nf name)

AUTO-ACTIVATE-HIGH (Segment name)
 AUTO-ACTIVATE-LOW (Segment name)

-M8-

These can also apply to pages, where the virtual page number and the segment name are
'bofh given. (Monitor calls provide information on unused page numbers, at execution

hme, if needed. This activation mformahon can be used to better manage use of LCS, also.)

£

.Auto—Achvcte isa fype of demand ollocdnon, that is,. whenfa segmenf is marked as auto- -
activate, no’rhmg is broughf into memory and no real pages are assigned. However, if the

' task beglns to wr:’re into a page in the segment, a profechon trap takes place, a page of
zeros is given to that task, and subsequent swaps will always swap this page. Therefore,
unlike demoggﬂfagmg, only the first reference to a page causes anything specual This
is particularly useful for dynamic tables -~ the user need not request more pages than needed,

but lets the system acquire pages as needed.

On an over|ay. operation, one segment is explicitly deactivated and another activated, by
the user. Or if the first is never to be used again, it can be erased; and if it may be used
" again in a few milliseconds, it can be explicitly semi-activated so that another "overlay"

is really only a map change. (This is, in effect, an adherence factor.)

Anyfirﬁe c'x‘segmenf or page is needed that is not in memory, the task wili be dismissed (ond‘
may be swapped out, if the system is very busy). When the segment (or task) is swapped in,

the task is again eligible for scheduling. Thus, a large overlay can take place in less than |
34 milliseconds as part of the normal swapping operations, with no ‘specicl effort. And by
semi-activating segments to LCS, very very ‘arge programs can be foverlaid” in virtual memory
by means of map changes. The MPM system makes extensive use of deactivate and auto-activate to
~ minimize the normal swapping operations. By use of these techniques, the loader "disappears” _

out of the space of the program it is loading -~ always a problem on non-mapped computers. .-

Access Protection

Ona flme—shcrmg or multi-programming sysfem, the system or other users must be completely
protected from any single user. This is accomphshed with special hczrdWore. ‘Hardware access

protection is available on a page basis, in the following four types:

No access
. Read only
v Read _and execute

Write, read, or execute

-M?-

Thé "no access" code is used for pages that are undefined or not yet referencéd in an auto-
activated segment. All writable pages are-initially set "read and execute”, on each swap-
in, so that on the first write after each swap-in a protection trap informs the swapper that
this page has been modified and must be swapped out; otherwise, it is merely "thrown away” |

on swap-ouf, to minimize swcp-o‘ut activity,

-The "no access” or "read only” or "read and execute” access codes are used to keep the

~ user out of his TCB, some of his phantom pages, and SVM, Thus, the user can _conh’él the
cc-cess codes in the TVM below.64K (except the TCB in page 0) but cannot change or often’
“even read the system. On dispatching every task, the access codes for all 128K are changed,
to insure that all memory is p'roperly protected and fo permit some system tasks to’l'ncv‘e greater .
privileges into system virtual memory than user tasks have, (On Sigma 9, unlike Sigma 7,

there is a master-protected mode; MPM will use this extensively for system reliability.)

Summary

"In summary then, virtual memory programming and the hardware map are used for:

.- Configuraﬂbn independence

. Relocation , |

. Software segmentation

. Demand allocation

. Sharing éf memory‘ ‘:

. Reentrancy

. Eliminating real memory fragmentation problems
. . . Minimizing swapping

. , Providiﬁg secure, sélecffvé access profecﬁon
. Efficient use of real ménﬁory space

. Fast, explicit overlays

They are not used for:
. Demand paging
. Automatic overlays

. Use of virtual memory larger than real rhemory

TASK MANAGEMENT

Definition of a Task

In MPM, we define a task as the basic unit of work for control purposes; tasks are the
. enhhes which are scheduled. From the viewpoint of the system, all tasks are lndependenf
in the sense that they may be performed concurrently. But in tasks that stem From one |ob

dependency relationships may be inherent due to program loglc.

~ Since it is the combination of program (code, procedure) and data - together with other
resources - which enables work to be done, tasks may also be descrlbed as such a combmohon.
Thus, for example, the FORTRAN translator is a program which, when combined with source
statements as data and resources such as workspace and files for output, is coooble of being
scheduled to do work. In MPM, we speck of the request for such a combination of program,

- data, and resources as the invocation of a task. Hence, a user who requests FORTRAN com-
pilation of a source file onto some oblecf file is invoking a FORTRAN task. Several FORTRAN
tasks may exist concurrenfly in the system; since the translator is pure procedure, only one

"copy” of the program need exist to satisfy these invocations.

 In MPM, any program which is reentrant and has a unique name may be incorporated as a

shared subsystem a la FORTRAN. The process requires two steps:
. The program must be link-edited to prepare it as a subsystem.

. The program's name must be entered in a shared-subsystem name table. This step

does E_ol;require a SYSGEN.

Design Considerations

Many MPM system functions are themselves performed as ’rosks For example, 1/O interrupt
handlers perform error detection funchons If an error is found, the handlers invoke a task

to do error analysis and recovery. Since tasks run in task virtual memory (see Memory
Management) this technique offers considerable savings in system virtual memory requirements .

in addition to solving some asynchronous scheduling problems.

-T2~

This last point leads us into the rationale for designing MPM as a "task oriented” system.

The following list is unordered with respect to importance:

-

Tasks provide a mechanism for incorporating programs as subsystems. In a

system oriented towards user built application packages, this is crucial.

‘Tasks are one means whereby the shortcomings of limited (virtual memory) -

addressing space can be overcome. Not only can the user avail himself

of this technique, the system can (and does) also so do; many system sérvices
run as "normal " tasks in user virtual memory. (Segment overlay capability,
discussed elsewhere in this report, provide another way of increasing

addressing space.)

Tasking allows for structuring complex problems in a more naturai -

" tanner: concurrent processes can be expressed as concurrent tasks;

dependency relationships are established via several mechanisms:

‘(described under "Event Control") for inter-task communication.

Hierarchical processors, such as SIMSCRIPT which franslates from SIMSCRIPT
source statements to FORTRAN source statements which must then be compiled,

are facilitated by the ability to invoke a task during execution of another task.

Total system organization is simplified by the uniformity of treatment that

a task structure allows.

In' combination with memory management segment techniques, the task structure
allows library elements (such as the FORTRAN run-time package) to be

shared among all the tasks which requiref them,

Task Invocation

We have alluded to the ways in which fasks are invoked in MPM in the foregoing discussion; -

invocation requests may emanate from:

e A user at a terminal.

o A program in execufion.

¢ Job control statements in a batch job.

o A user created stored command file.

~T3-

The invocations will almost always be explicit, that is the terminal user or programmer will

usually be aware that he has invoked a task. There are two cases in which invocation will

be implicit:

. A terminal connect signal (ring. defecf cn‘fenhon, .) will normally invoke an

executive task,

A terminal which connects via a dedicated line* will, in addition to invoking
the executive task, be "attached" to a filed procedure associated with that line.
In general, it is assuméd that the procedure will eventually invoke the task
associated with that line, Thus, for example, the user could be automatically

connected to an application fﬁdckage for stock market quotations.

Definition of.a Job

~ In MPM,. we define a job as the basic independent organizational unit for a collection of tasks,

Its essential characteristic is its independence from other jobs; one job cannot affect another job

other than as system load affects all jobs. Within MPM, the only functions of a job are:

To accrue accounting information as each of its tasks terminates,

To provide a mechanism for sharing resources among its tasks that assures
independence from tasks in other jobs. (The task mechanism itself allows
independent sharing of system resources,) |

To provide a mechanism for attaching multiple~terminals to one application package.

. The only explicit manifestation of the concept of job are the various control blocks that

accommodate these functions. This will become more clear as the description proceeds.

A conventional batch "job" is also a job under MPM, and the batch]§b steps are tasks, How=-

ever, an additional executive task also exists,

Resources that are shared can be broadly‘ classified as segments (of program, data, or work-space)

and files. Sharing is accompllshed by always referring to these elements indirectly (fhrough

~ pointers), Thus, a gwen resource used by a task may come from itself, from its job, from a

shared subsysfem, or from a shared llbrary. On task invocation, its access to shared resources

may be controlled by its invoker- (limited to a level no greater than its invoker's).

FA dedicated line is defined as one on which the user always wishes to be connected‘\lto the
same program, ‘

T4

Structure and Examples

Figure T1 is a conceptualization of how jobs and tasks-are organized and resources are shared.
Each of three tasks. is represented by a confro‘l‘ block whiéh has associated local resources
(workspace, data, program). Since terminals and files are usually job resources in MPM -
(though not necessarily available to every task), the tasks are shown as attached to shared
job resources. Task 1 is the only task in job 1; tasks 2 and 3 are both in job 2 and could be

. sHaring segments. From the MPM point of view, tasks 2 and 3 are independently sharing

resources of job 2; any dependenéy relationships are inherent in the tasks themselves (é.g.,
they may interlock on a shared data item), Tasks 1 and 2, which are sharing a subsystem,
are totally independent since the subsystem is a pure procedure and there is no other way
for these tasks to communicate. Thus, Figure T2 is a better logical representation of the

same structure.

B Shared : _];B\
Local Job 1 ‘ /

Resources Resources- |- . , v
Con!‘rrél)slkmOCk Task 1
1
" Shared
Subsystem
Control Block S
Local . : Shared | : , Vs
Resources Job : %o
' Resources 2\ | Task 2
Control Block
Task % I S R
Local(: . o . - ' Task 3
Resources ' L : : '

FIGURETI. e " FIGURE T2

-T5-

vFigqre"iB illustrates the steps involved in connecting a user to BASIC. In A, the user implicitly
‘invc-)ked an EXECUTIVE task. In B, he has requested BASIC, and the EXEC invokes a BASIC
task for him. Finally, the user is conversing with BASIC as shown |n C, with the EXEC task

inactive.

N

EXECUTIVE
TASK

- FIGURE T3-A

User

EXECUTIVE
TASK

BASIC
TASK

FIGURE T3-B

EXECUTIVE
TASK

i
)
)

BASIC
TASK

\

FIGURE T3-C

T6-

Flgure T4 is the hierarchical SIMSCRIPT use of FORTRAN menhoned earlier., The user has
requested SIMSCRIPT and the EXEC task has invoked a SIMSCRIPT task for him. In the course
of execution, the SIMSCRIPT task has invoked a FORTRAN task (which the user need not be
aware of), Presumably, upon completion of compilation, the FORTRAN task terminates and
a signal is sent to the SIMSCRiPT task; thus we may think of FORTRAN as a serial sub-task
to the SIMSCRIPT faék. oOn the other hand, the FORTRAN task could be processing data in
.pa'rdllel wifh the SIMSCRIPT task, in which case they could be called concurrent tasks. It

is lmporfanf to recognize that such distinctions are strictly a function of how programs are °
wnHen and intfer task commumcahon facilities are used; MPM recognizes no differences in

task types.

1
EXEC TASK
T
1
I
|
SIMSCRIPT FORTRAN.
TASK TASK

FIGURE T4

17~

Figure T5 represents the programmer's view of the kind of complex structure that MPM tfask

management permits.

Exec

Task

User Invoked

Task

.1 Concurrent

Sub-Task

Task 1

Y

Sub-Task 11

Concurrent
Task 2

Y

FIGURE T5:

Sub-Task 12

JU—

18-

MPM:!'s command language processor imposes the restriction that the user (whether at a
terminal or through a filed procedure) may invoke only one task at a time; programs have
ho such restriction. Our rationale is that the requirement for this capability is low and
protocols involving "invoke and wait” and "invoke and continue” (even if the former is
default) together with attendant ambiguities in interpreting the meaning of an "attention”
r "BREAK" signal are unduly complex for most terminal users, Note thaf an application

'paclfage programmer may overcome this restriction by havmg a sux’rable command |angucge
within the application. In addition, an upper limit on the number of active tasks that a.
job may have is imposed to protect the system from "run away" programs. This limit is a
job parameter rather than a system parameter in order to provide flexibility for installation

managers.

N\ulh—Termmql Appllcohon Packages

Thus far, we have described Task Management from the point of view oF terminal users
working independently to solve their individual problems, There are cases in whicih groups

of terminal users may wish or need to work together fo solve a common problem. MPM offers
facilities to build application packages to meet such requirements, Figure T6 illustrates the
structure that accommodates two “groups” of users (as represented by JOB 1 and JOB 2)

independently using the same application package. It is important to recognize that the

boxes represent the control blocks for the tasks; the programs (code, constants) are shared

between the jobs; workspace and files are job dependent.,

Note that the executive task - whose main function for single terminal users is to provide a

sfall back base” with which the user can communicate when all else fails - has been eliminated;
this function is more logically performed within the multi-terminal application package control
program, . Attendant reductions in space on the swapping RAD and ‘in internal control fables also

influenced this decision,

Since any sharable subsystem is, by definition, capable of handling multiple terminals
nsimultaneously, the question arises as to why we supporf multiple terminal applications in a
"specialized” way, The question is even more relevant when MPM'S ground rules for interfaces

are listed, since they impose burdens upon the application package programmer:

~T9-

A

1

v I
Applic. Pkg. :
Control Task .-
< - o
N N Tasks |r=———-
N ' .
N : Shared
N o
. ,
AN Shared Code
s Code
ﬂo% 4 4
/
7 .
/ —————————
// :
User // : !
/ (| Other :
Applic. Pkg. i
Control Task '
Tasks -—_———’—!

FIGURE Té

-T10-

. ‘The application package (AP) will perform time sharing functions for terminals
within a group. MPM will timé shfxre among the groups.

. AP will do accounting (as it requires) for individual terminals in a group., MPM .

' will do accounting for the group as a whole. - . o

. AP will accept "log-off" from a terminal and inform MPM (MPM will inform -
AP of "disconnects”). Once a terminal "joins" a group, it will be unable to
get back to MPM without a disconnect and a new log-in. |

. MPM will provide AP with in’fernd.l identification numbers for the terminals,’
Any privileges which are a function of a terminal's external identification will

be established via protocols between AP and the user.

We have already indicated one of our rationales for multi-terminal application package
support: more effective space utilization by elimination of the executive task for each user.,

Over and above the strong arguments for efficiency that this implies, there are two crucial

points:

. We don't know how to provide inter-terminal communications facilities in a
"general purpose” environment, An AP is in a much better position fo handle,
ifs specnflc requirements, |

. We don't know how to prov:de genercllzed "file sharlng“ capabllmes with

"automatic” lock-out on write af several levels (e.g., loglcal record, page,
cees enhre file) and accounting for potenhal deadlock problems. Again, AP

isina much better posnhon to handle its specific reqwremenfs.

Thus, we feel that by facilitating rhulﬁ-terminol dpblicaﬁoris, we enable MPM to suppor.i'
a broader range of appllccmons than would otherwise be possible, albeit cd' some cost in

complexnfy in programming of the AP's. Note that AP's which don't requxre these facilities
can be programmed like any standard subsystem (e.g., FORTRAN).

T11-

Summary

The general subject of inter-task communication facilities in MPM is discussed in another
section of this document (Event Control). It should be remarked, however, that powerful

~ facilities are afforded as a by-product of the ability to share resources, in particular, data

segments,

‘MPMIS Task Management provides:

. Interjob independence coupled with interjob sharing of system resources.

. Intra job sharing of job resources with controlled access privileges.

. Natural expression of complex problem structures. |

. Capability for hierarchical building upon existing sub-systems,

. Uniformity in dealing with jobs whether they be batch, single terminal, or

multiple terminal and independent of whether or not the terminals are on

dedicated lines.

EVENT CONTROL

Preface
In preceding sections, as well as in those which will follow, diverse requirements for

communication among ['entities” are noted:

. Inter-task communication
. Sysfem-—fcsk Communication (e.g., signalling complehon of qsynchronous servnces)

. Intra system communlcahon

Since "event control” was a proven technique (e.g.; 0S5/360) for handling most of our needs '
we decided to pursue this approach. We Found that, in conjunction with pseudo-interrupt
capabilities, we could not only satisfy all of our needs, but that we also had what we in-
tuitively felt was a very flexible and powerful capoblhty, albeit one whose potential we
hadn't fully investigated. Thus, this section is in two parfs: event control as it satisfies |

system needs, and a "feel" for event control as it might ultimately be utilized.

Fundcmenfal Concepts

The dictionary defines an evenf as ”anyfhmg that happens MPM's definition is the same
excepf that the "things" that can happen are finite in number and must, eventually, be listable.
Since our design is incomplete, and the intent of the fo||owmg list is to be lndlcahve, it is

incomplete:

. A request for 1/O is an event.

. An 1/O start is an event.

. An 1/O completion is an event,

. An interrupt is an event.

. A trap is an event. | :

. Explrcmon of a pre—sef time is.an event.

. Requeshng and re"elvmg the directory for a ﬁle are events.
. Internal (software) sngnals are events. -

. Errors are events, | v

. Task completion is an event.

E2-

As can be deduced from the above list, the system itself makes heavy use of events and event
posting techniques as well as making these available to tasks it is monitoring. In what follows,
the word "task” implies a user task or an MPM system task; they are treated in the same manner,

‘although the latter may have special privileges.

Event Types and Event Control Blocks

- Event control is used, in general, to synchronize asynchronous activity, whether that be as .
mundane as "waiting for I/O completion” or complex inter task coordination. Events may be
expected - e.g., an 1/O completion, in which case we term them solicited; or unexpected -

such as an attention signal from a terminal, in which case we use the ferm unsolicited.

With the exception of hardware traps (see below), those happenings which are defined as
Mevents” in MPM result in the creation of an event control block (ECB), examination of an -
ECB, posting to an ECB, or destruction of an ECB. For example, an I/O request results in

ECB creation, a request for status prior fo completion results in ECB éxaminaﬁon, 1/O com- |
pletion results in ECB posting, and a request for status (after completion) results in ECB °
destruction. In addition to thus serving as the sequencing agent for asynchronous activity,
ECB's also serve as the repository for information which must be conveyed from step to step

in the activity. In éor_ﬁcular, ECB's (which are resident) contain information related to a
fequesf from a task (which is swappable); such information, for example, as the pages involved

in an 1/O transaction, .

In most cases, ECB's are on threaded lists chained both to the requestor for an action (e. g.,
a task) and the requestee for that action (e.g., a system handler). Hence, a task's request
for 1/O results in creation of an ECB which is chained to the task as a solicited event and.

to the I/O handler as an unsolicited event:

-E3-

FIGURE E1
o Tesk 1/O Handler
Solicited - ' : - Solicited “""—‘]
Events ; ‘ - Events :
__Unsolicited y Unsolicited
Events ECB : Events -

Solicited Link
Un|s_c,>l cited |
in

Y

The same threaded list structure is used to handle inter-task, system~task, and intra-system

communication needs in a Uniform manner. Thus, in the figure: the "I/O Handler" could
have been another task or another system element, and/or the "Task” could have begn a

system element.

Waiting on Events

Since MPM permits certain kinds of parallelism (e.g., concurrent tasks, asynchronoué 1/0),
it is Vnecessary to provide mechanisms for waiting upon and signalling confluence of separate |
activities. Solicited events may be handled in fwo ways (separately or in combination): by
waiting upon event co’mplefion and/or by réquesfing a pseudé—interrupl'.(see below) upon

completion. Unsolicited events may be handled only via pseudo interrupt.

In MPM we permit a task to wait upon:

. Asingle specified event
. All of a set of specified events

. Any event

More complex logic ’is, of course, possible, Since the requirement for it is small and such
capability would entail additional overhead for all users, we deemed. it Tnappropriate.. The. -
primitives supplied allow programmers to build as complex a set of facilities as they require

for a given application.

- -E4-

Pseudo-Interrupts

The MPM pseudo interrupt system consists of:

. A single interrupt level with 31 séparcfely armable request lines, somewhat analogous

to the Sigma series hardware I/O interrupt.
- A level inhibit capability for use by the task.
. Sys’fem profecflon against reentry until reenfrcncy requirements have been met,

. Flexibility in "pseudo™ interrupt programmmg equivalent to that in "hardwcre

interrupt progrcmmlng.'
A brief expansion of the last two points is appropriate: Flexibility is afforded the interrupt
level programmer partially by making the context (registers, PSD) of the point af which his
program was inferrupted available to him at the time of interrupt, Since he may wish to save
this context (as well as to perform other functions) before allowing another interrupt to occur,
the system automatically inhibits interrupfs until he says "OK". In hardware terms, the system

| performs an XPSD that inhibits interrupts, the interrupt program performs fhe LPSD to allow them.

MPM reserves some request lines for system use (e.g., an attention signal from the terminal).

The remainder are available for the task fo use in two ways:

. As part of the request for some action (i.e., a solicited event) a request line to

activate upon completion may be specified.

. In inter-task communication (see below), the sending task must specify a request

line to be activated in the receiving task.

Inter-Task Communication-

Tasks can communicate with each other in one of two ways:

. Through their shared resources (e.g., common segmenfs of data).

. Through signals, together with small amounts of data, which MPM handle's" via

event control.

~F5-~

The mechanism is simple; the sending task makes a system call specifying:

. The ID of the receiving task.
. The number of a pseudo lnferrupf request line to be frlggered in the recelvmg task.

" Ophonclly, several words of data (the maximum has not been set as yef)

This information, together with the ID of the sending task is placed in an ECB and treated as

t -dn unsohc:ted event for the recelvmg task,

Nofe that this technique does not allow a receiving task to directly wait upon a signal from
“another task as a solicited event, However, by suitable communication between a task's
interrupt handler and its main line program, the equivalent can be accomplished by waiting

on any event,

Hardware Traps

Hardware traps are a special class of unsolicited events for which MPM takes default action
that usually results in aborting the task that caused the trap or, in the case of hardware mal-
functions the tasks that have been affected by the trap. Tasks may elect to have some traps
(e.g., floating point, some CAL's) routed directly to their own handlers (which are cénsfrained
to be in slave mode). By keeping the old and new PSD pairs for these traps in the task's control
block (which is read only to the task), MPM is made fofclly fransparent to the traps for tasks
that exercise this option, Furthermore, by adopting the philosophy that context for traps whlch
a task can cause should be kept with that task, trap routine reentrancy problems are greatly
alleviated. Other traps (e.g., non-—allowed operation), which - for reliability reasons - must -)
be handled by sysl‘em fault management routines, may optionally be routed indirectly (i. e.,

- after system processing) to a task's own handlers, Thus, the debugger can field traps such as

privileged instruction violations and construct error messages with contextual data (e.g.,

statement labels) meaningful to the user.

Potential

The examples that we have used to describe Event Control in MPM have been rather "standard*
Input/Output and inter~task signalling. The potential of the power and flexibility of the system

are something we haven't fully explored as yet, However, some possibilities are worth mentioning:

-E6-

There is no reason why the mechanisms described for inter-task communication
cannot be used for iﬁfra—quk communication. That is, the .ID's for the sending
-and receiving tasks can be the same. Hence a task can "frigger“ its own bseudo
interrupt programs and present them with data. - This has obvious values for -
debugging individual tasks which will later be incorporated in larger jobs.
It is also roughly akin to the capability for invoking serial sub~tasks described

in fhe section on Task Management.

By noting that a task may be invoked from an interrupt level in another task,
we realize that asynchronous solicited events and/or unsolicited events may
very easily be used to cause task invocation. Thus, for example, statements

of the form:

ON event INVOKE task-name

seem to be natural to handle.

Deferred executions - tasks which are fo be run at some selected clock fime

or time intervals can be handled either by waiting for the time evenf or
.inferrupﬁng on the time event and then invokir)g’rhe task to b;a ron, (It wbuld
be preferable if the system, rather than tasks within the system, handled deferred
executions, since the latter require space, However, we believe this is a
satisfactory mechanism for providing a desirable capability and, co'nskridering

that it's a by-product of other mechanisms, it's free,)

Summary ‘

This section has described MPM Event Control primarily as it satisfies internal communication |
needs. We have also indicated how, in combination with other system facilities such as Task
Management, Event Control offers powerful tools for sophisticated programmers {such as those
who must implement a subsystem like PL/]‘). A‘f the same time, we satisfy casual users (e.g.,

a user of BASIC) who need not be aware of any of the system mechanisms,

SCHEDULING

There are really two distinct kinds of scheduling in MPM == swap scheduling and CPU
schedulmg. Swap scheduling is concerned with the decisions and fechnlques of moving
quk in and out of real memory; CPU scheduling is responsible for regulating the priority
queues from which a task is dispatched, It is |mporfani' to understand that these are logically
separate operations, although they do interact and they do use some of the same lnferval

queues and tables,

: S;/VG}S Scheduling

All tasks in MPM are chpped out of memory onto the high-speed swapping RAD when they

are not needed for léng peri.odsf of time. This includes interactive user tasks, batch user

tasks, MPM tasks, and shared SL'Jbsysfem tasks, Only tasks are swapped, (That is, all of

MPM in System Virtual Memory is permanently resident in real memory.) Thus, thereis

only one mechanism for swapping. Before a task can be a candidate for CPU dispatching,

all active pages of active segments must be in real memory; there is no "demand paging" as
used in some systems. (Semi~acfivé segments are "being" swapped in also, although may not
have yet arrived in real memory.) The swapping logic employs angular queuing techniques on
the high-speed RAD, and does not use file management but goes directly to IOCS, Thus, space

on the swapping RAD is manageéd by the swap scheduler, not file management.

There are two main decision pafhs in swap scheduling: deciding what to swap in, and deciding
what to swap out, Tasks which are not waiting on some event (some ECB)cre eligible for swap

in. The decisions for swap in or swap out are based on whether the system is currently memory
limited, CPU limited, or I/O limited. For example, if the sysf;am is memory limited, tasks :
may be swapped in that tend fo minimize memory requirements -~ through subsystem queuing or : .
analysis of shared memory resources as well as on the basis of task size, And if the system is
memory limited, all tasks are 'swapped out as soon as ﬂ\ey go into a WAIT state, If it is not
‘memory limited (as when running mostly mulfi-—prercmmihg batch), tasks are not swapped out ex~
cept for very long blockages. The exact rules require a detailed, technical undersfcndlng of the
system and will be described in the MPM Project Design Flle. The important point is that

analysis is made conhnually to determine the limiting resource -~ memory, CPU, or I/O -=

52~

and adjustments are taken in small steps, rather than large jumps, to damp out sudden fluctuations,
However, the system is able to adjust automatically to everything from pure multi-programming |
batch with /O bound jobs to heavy conversational loads. These can occur af different times

6f the day or af different installations., In all cases, good conversational response is consndered

more important than highest CPU utilization, and swap selection is designed to supporf this rule.

.Egeh time fdsks’are swapped in, all "wrltdble“ pages are marked "read and execute” initially,
so the system only has to swap out’ pages that have been modified, All swap=in and swap-out
is performed on a page basis, rather than a segment or a task basis. That is, if there is 1/0

in progress on a smgle page for a task, this page is flagged as having I/O in progress and is
held in memory, and all other pages for the task are swapped out. Pages or segments that the
user has deactivated are never swapped in, and hence real memory requirements are kept as
modest as possible. Of course, shared subsysfem segments need only one copy in real memory

and are not swapped out —- since they have not been modified. (Hardware protection guarantees

this.)

Dispatching
Each CPU, as it comple’ressits current activity (usually signalled by the expiration of a short
quantum) goes to a set of centralized routines from which all currently ready tasks are dis-
patched. Through these routines the CPU selects the work of highest priority (as determined
from the system priority queues) fo execute. With the excephon of interrupt level subrouhnes,
everything is scheduled onto the queues and dispatched from them: MPM tasks, interactive
tasks, compute tasks, and batch tasks, It should also be nofed fhai‘ - in contradistinction to
the "Kernel Scheduling” of TSU - neither scheduling nor dlspafchlng is done from an mferrupl’
level. The WAIT operations and ECB's, described under Event Control, are the only means
of changing from WAITING to ready and then to active (that is executing) status for individual
tasks, Pos’ringv to an ECB can cause a fask waiting on an event associated with that ECB to move

to a CPU di5pcfcher queue for scheduling.

All task execution is hme-shced whether batch or conversational, Generally, short qucnfums

- are used, unless the fcsk has requested a long quantum or unless MPM has already identified

-S3-

the task as compute bound. This is designed fo give good response fo conversational requests
(whlch are typically shorter even than the short quantum) and to keep file 1/O activity high even

when only multi-programming batch is runnlng.

Prlorn‘y of tasks is considered in The CPU dispatching, with some MPM tasks highest and
conversahoncl tasks in the middle and compute-bound batch jobs generally low, Somé MPM
housekeepmg tasks may be even lower than batch fasks. Applications tasks can select their

prlorlfy level queue.

Multi-Processor Considerations

When two, three, or four Sigma 9 CPU's are operating, they can all be executing cne copy

of MPM routines and even some system tasks. Multiple CPU's are conSIdered equal for all
purposes (except initial system load). Thus, each CPU does ifs own CPU dispatching, but inter-
processor interlocks on data permif only one CPU at a time to do swap .séheduling. TWO user
tasks can, if the user so permifs, be operating on different CPU’s af the same time for the

same job, to permit faster tum=-around. " But the user, not MPM, is responsible for ;roviding

interlocks on files or shared data segments == with the aid of standard MPM facilities.

The philosophy of lockout in MPM routines is to place interlocks on small data tables or
table entries, and to use a large number of these locks, as required, to keep other CPU's
out of data that is currently being modified. This is used instead of placmg interlocks on

" code or on a few major tables. This takes a litfle more initial design effort, but resulfs in

a much lower probability of CPU conflict when operating as a multi-processor.

Although the CPU's operate as equals, this is not the same as anonymous CPU's; That is,
some one CPU may be processing cer”rain interrupts exclusively, due fo having ifs interrupt
level armed and enabled. But all other CPU's possess these same i‘nferrupfsf and can take
over the processmg if the other CPU fails. Thus, one CPU may do a little more work than
others. But all CPU's can schedule themselves, and this is not frue in a master-slave CPU
relationship. Having equal CPU's is generally more efficient and also permits faster re~

configuration in case of CPU errors or failures than using a master-slave relationship.

FILE MANAGEMENT

1/O Management

The 1/O operations for MPM are organized into four separate levels, in a distinct
hierarchy. Only one of these four levels is properly called file management.” The

Tour levels are:

« Inf or'nahon Management - the highest level, dealing with external

. (user) inferfaces and the total flow of data and control.

. Data Management - the next highest level, dealing with the logical
manipulation of data and the organization of data within files, the
content of this data, and the accessing methods used to store/retrieve

this data.

. File Management - the level dealing with the physical organization

of data into files, the allocation of secondary storage, and the naming,

extent, and location of files.

. Device Management (I0CS) - the level dealing with device and channel

routines and the physical fransfer of data to and from external devices. -

There are a number of reasons for this hierarchy. For one thing, modularity is forced

in this way, and modularity is always a good design feature. Also, system rellablllfy
is lmproved The Device Management routines (IOCS) are pcrf of the resident monitor,'
. in System Virtual Memory Thus, they operate in master mode, protected and unprotected
The File Mcnogemen’r also operates as immediate service routines in Sysfem Virtual Memory,
or as MPM tasks in Task Virtual Memory. Both of these opercfe mostly in master mode
protected. File Management is entered from the user by way of CAL's; IOCS is not -
directly available from user tasks. By contrast, all of Data Management runs inuser
mode, mapped, protected either in the system library as shared routines or as private
copies in task memory. Data Managemenf is entered by BAL instructions. And fhe
Information Management routines WI” run as user tasks, with normcl user profechon.
(No specific Information Mancgemenf tasks are currently designed for MPM.) Informc:hon

Mancgemenf is built on Data Management which uses File Management whlch caHs on

* This is a change from previous TSU or MPM documents.

~FE2-

’Device Management. Thus, maximum freedom for growth in Information Management ‘
~and Data Management, Wi’rh full sharing and efficiency features, is pos;sible. And

yet the resident monitor and the protected parts of MPM are absolutely unaffected.
And users who need only file page cperations do nbi‘ pay for inverted or indexed 7

sequential file operations.

The remainder of this section deals only with File Management, in the limited
sense of the definition. What has been described under structured (sequential)
or indexed sequential operations is now part of Data Management, and is discussed

in the next section.

File Organization

A file is defined as a named collection of data, known to the system only by name,
absolute location, and extent; and known fo the user by name, a set of ordered (logical)
pagés, and internal structure and content. Every file is treated by MPM as a set of

N pages (from 1 through N, logically contiguous) with unknown contents. (A page

in a file is 2048 bytes, the same os meméry pages.) Effectively, the user sees each of

his files as a "virtual " set of pages, numbered from 1 to N, and the system "maps" them
into the actual pages of secondary storage as part of its file management responsibility.
(The "map" is the file directory, described below.) Furthermore, every file is a random
access file to MPM-—qp a page basis; that is, the virtual pagé number is the index of
each random file page; This is true for files on RAD, disc’pack, CRAM, and even magnef_fc
tape~-although tape motion should be sequential by pages for any reasonable sort of ‘
efficiency. (All file default assignments are to disc pack.) Figure FM-1 shows this effect

for a file on a disc pack.

' -F3;~

Virtual A
/7
Pages v
s
] . \\ o) //
. 2 ~ . 4 o 7
File as R ‘ ' Y
. 3. I IPEREN Y4
viewed ~ <~ O~ s
by user RN File <
" tasks - Directory N T
' ' '/ 71 (File Map) N
,a
s N N
4
7/ N
N-1 [7 N
/ N
/ R
N File
Packets
on Disc

FIGURE FM-1: File Virtual Pages

As the figure shows, a contiguous set of pages is presented to the user, buf the file-
is acfually broken mto fragments called packets on secondary storage, where the

packet size is a function of the storage device. (See more on "file allocation”, below)

- This fechn}cjue has some of the same advantages as virtual memory programming, for
avoidi‘hg fragmentation problems in the real storage device, for permitting files to
grow or shrink effi ciently, for permitting easy and device independent referencing,
and for sharing of devices with other files. Furthermore, on this flexible file orgarﬁza’rion :

| any number of dara management techniques can be built, since the pages of a file can
be accessed in any order desired--including sequential or random. It should be
emphasized that only file management knows the translation from virtual file page
address to secondary storage address; IOCS knows nothing of files but only of cylinders,
tracks, sectors and devices; and user tasks can only refer to file pages by virfual.page
number. This permits maximum freedom for device independence, for reconfiguration,
for reliability, and for ease of allocation. Also, since a page is the physical block

size for all devices, and since every physical transfer involves one or more file pages

—FA-

onto page boundaries in virtual memory the file management is truly an extension of

vxrfual memory programming. This fact is used to "lock” pages in memory where I/O

is in progress, and swap out the remamder of a task -- when necessary. Also, when a
page of memory is written to a file page, the page in memory can be removed from the |
user's memory map (and the user gets a fresh, clean page) and the first ‘real memory page
is turned over to file manxagement (and 10CS) while it waits being written to disc. The
niemory rﬁcp is thus used fo quickly "move" pages -~ no core to core move is ever needed.
This results in very efficient memory utilization and low overhead in file management, The
requirement that all file operatiorts use a physical block size of exactly 2048 byfes simplifies
all file mdnagemenf operations, results in good memory utilization, corresponds well to the
fixed sector sizes on XDS disc packs, CRAM, and RAD's, and results in efficient transfer

for logical records in most cases.

System Client Inventory

The narme of each file known to MPM is kept in a special system file, called the System
Client Inventory. Each file name is located in a user account entry (a catalog) in this
file, and thus each file request must specify the complete account name as well as the
file name. (This may be done implicitly for the user. The account name can be arranged
ina hierarchy of up to six levels -- for company account, department account, project
account and individual account -- for example.) Also included in this System Client
Inventory with each file name is a file type -- eighter source file or relocatable object
module file or absolute (loadable) file, or checkpoint file, and so on. Thus, user's can
refer to a program -= in all its forms -~ by a single name and the system will inform file
management (from the context of the request) which type of the file to actually use. This

results in a vast simplification for the user in naming his files.

Also included in the System Client Inventory is information on file size limitafions, special
device privileges, and the péinfer to the System File Inventory for the file (and file fiype) ‘

being referenced.

Sysfenﬁ File Inventory

-F5-

The System File Inventory (SFI) is another special system file which contains

an entry for each file known to MPM,

Each entry contains the reel number(s)

(or pack number or deck number; never the physical device number) where

this file is located, and the location of the direciories or packets for this file--in terms

of cylinder and track numbers, as appropriate. If the file is smaller than 12 packets,

there is no directory required and the System File Inventory points directly to the actual

file packets. Otherwise, the SFI poinis to up to 6 directory pages. Therefore, a file

reference, given a file name and account name, would proceed as shown in Figure FM-2:

Complete

System
File | Client
Name “1Inventory

System
File
Inventory

Large .

File

File
Directory

Small File

e —

FCB

FIGURE FM=2: File Referencing

Y

File
Packets

Actually, only when the file is first assigned is this entire procedure required. Once the

SFI is validated, the information is copied into a File Conirol Block (FCB) and this is kept

in protected memory with the user job for all future references.

File Security

The SFI also contains information on the user's access rights to the file. By comparing the

user's active account number with the account number of the file and checking the rules

(saved at file creation) that govern this file use, the file use is verified. If account

number is not sufficient, a key is requested (a password type of philosophy). The user

must specify his intended use of the file at ASSIGN time. This would be either:

~F6=

. Modify access rules or keys
. Read
e - Execute

‘. Write (add-on only)
. Update (read and write)

) Different access rules and keys are (can be) required for each type of file use. Permission
f.oA sBare the file is a’lso checked at this time, from other information retained in the SFI,
If the file has been accidentally destroyed or purged from secondary storage to tertiary
storage (that is, tape archives) this backup file information is also in the SFI, and mount

2
instructions are issued to the operator,

Volumes

A volume is defined as a singlve. -unif of secondary storage; for example, a reel of tape,

a disc pack, a RAD unit, and a CRAM deck are all volumes, There are two types.of
volumes under MPM: public and private, Public volumes are always mounted when

the system is in normal operation, and contain files for any number of users, Private |
volumes are only mounted on special requesf,‘ and may contain files for only one account
‘per volume. RAD's are always public volumes, disc packs may be either public or private,
and CRAM's and tapes are always private, MPM supports both multi-volume files and multi-,
file volumes. Each volume has a volume label at the beginning of the volume, and each file
on tape has a header label and a trailer label, Non-standard tapes (without labels and other
than 512 word page blocks) are permitted, but only through special calls to IOCS ~- not
through file management. Foreign disc packs are not permitted. A special command (an |
ATTACH) is provided to permit either on-lme or batch users to work with pnvcte volumes,

" but use of private volumes must be granted from mformchon in the account,

File Allocation

There are two methods of physical file organiiaﬁon-——casual and formal, - They differ in~

methods of allocation, as described below,

-F7-

_The unit of blocking and fransfer is a page. The unit of file allocation is a packet, where

a packet is:

3 pages for the RAD (half a track)

3 pages for "casual " disc pack files (one frack)

60 pcges for "formal " disc pack files (one cylmder)

1405 pages for CRAM (one strip) (CRAM is always "Formal")

. 1 reel for magnetic tape -

This results in considerable efficiencies in terms of directory sizes, allocation overhead,
and recﬁ)‘cﬁon in seek time for multi-page fronsferé or for use with privafe volumes, as .
opposed to using the allocation unit of a page. It does mean the user is charged for a
few more pages than he is actually using, sometimes, but the improved.performonce is
wotth it. Since reliability information is kept only on a track basis, this is also the
smallest reasonable unit to deal with for allocation. The RAD is allocated on the basis
of half a track to make it look like the disc packs.) Formal files on private volumes
can reside on up to 7 separate volumes, if necessary. Thus, files of up to about]50

million bytes can be accommodated on disc packs, and up to 700 million byfes on CRAM.

All allocation for "casual" files is done on "demand", as the file grows. Allocation for
Mormal " files is done when the file is defined, and the user can control allocation to some
extent, for better efficiency of operation. However, compacting is not done except as a

housekeeping function or by direct user request.

MPM accounting operations collect information on the number of pages allocated, per

day per account.

File Control Blocks . . _

File Control Blocks (FCB's) are built and maintained in-job memory that is read-protected
. i) N :

to the user task. Therefore, the user cannot modify their contents, and they need be

verified only when set up the first time. FCB's contain only information on. the logation

and extent of the file in question--not on its content or current logical position. The

-F8-

_blocking fnformation for logical record operations is contained in a Data Control
Block (DCB) and is located in “_wrimble" yser memory. This means that for files
requiring only page operations, no DCB or blocking buffers a're required, and FCB's
are very small (about 12 words per file). The FCB points to the Sysfe‘m Device ‘
Inventory entry that contains the particular f{le or porﬁon of a file, b){imednsv:

~ of a logical device pointer (not a physical device number). If FCB's ‘_rvefex"'

" to mulh—volume files, pomfers to all volumes are contained in the FCB, If

the volume is a publnc volume, FCB's from many tasks point to it. (See the sechon ‘

on IOCS for more on the System Device Inventory.)

Logical File Number

The Logical File Number (LFN) is an internal number, used in all fi!e calls, to identify
the particular FCB being Used The LFN is really fhe same.cs. the Logical . Umt Number
in FORTRAN 1/O statements, and so is very easy to use for FORTRAN programmers. -The
LFN must be set equal to some file name (and hence, to some FCB) by a command language
ASSIGN statement. There are a set of 32 LFN's in each task TCB, and ‘fhis table of 32

LFN's is really another map-~this time of the internal file number to FCB equivalence.

Logical : System
File Number Device
Table ' Inventory
_ : , —T71 LDN
LFN e FCB- >

—

FCB-j

/

FIGURE FM-3: Internal File Naming

-F9-

If it is meaningful for the file operations, several LFN's can point to the same FCB.
Or there can be up to 32 unique FCB's for a task. Thus the "binding" of file names
is on a symbolic basis and is postponed until execution time, permitting as much flexibility

.as possible for device and file assignments.

Buffer Pool Management

A critical part of any file management or data management operation is buffer pool
sharing and allocation. Since File Management does not do any blocking or need cmyZ
buffers for data operatidns on logical records, it could simply ignore the problem of
buffer pdol management. Howeve;;, doing data management with reentrant routines would
result in difficulties communicating space needs to the requesting programs if those programs
were in FORTRAN or COBOL, Therefore, some of the phantom pages or available task space
is used for an 1/O buffer pool, and special calls to file management are provided to acquire and

release space in this buffer pool.

File Page Operations

As mentioned above, all requests to read or write a physical block of information from

a file must specify the virtual page number of memory, the virtual page number of the file,
and the number of pages. Only full page operations are permitted. All operations permit
1/O-compute overlap; that is, all operations permit a no=wait operation, requiring a later
"check" operation before the transfer is considered complete. fhus users or a data management ’
routine can exercise full control of 1/0O Buffering. By use of specific WAIT requests |
specifying which FCB's to“wait on, or by use of pseudo inferrbpfs for end action or unusual

end notification, very close synchronization of task and I/O is possible with little effort.

All file page operations take place by way of CAL's to immediate service routines in

System Virtual Memory.

File Integrity

File integrity is considered the single most important part of system reliability. Consequently,
" a great deal of effort is spent in guaranteeing file integrity. All write operations to the

System Client Inventory, the System File Inventory, and file directory are write-checked.

~F10-

Further, all entries are individually checksummed in software, to further minimize
possibility of error. All file allocation techniques are designed to minimize the number
of files affected when tracks or surfaces are lééf. All user files, at the user option,

can be check-written, at direct cost to the user. In some system modes, all transfers to
selected devices are automatically check-wriffen af no extra cost to the user. Backup
copies of all files that have been modified are saved (on tape) at periodic intervals

or at the request of the user. All posting operations are done as "cleanly" as possible

to minimize extent of damage in case of error or failure and to minimize the cmounf of
Stransition” time when a file Is being "changed". For most editing operations, a temporary
file is used for editing, and only on the successful completion of the operation is the
"name" ;hanged to reflect this fact, so that the unmodified old version is available Zn‘

_case of error or failure.

Device preventive maintenance and reconfiguration routines keep a complete history of
all hardware problems, by track number, and save this part of the volume label, on each

volume.:

More' details on file integrity are included in the section on High Availability.

DATA MANAGEMENT

Data Management can, and probably will, grow to be larger than File Management. As

noted under File Management, Data Management will be implemented as library subroutines,
link-edited to user programs and entered with a BAL. All of Data Management will be in user
mode, therefore, Initially however, only structured files, byte operations to unstructured files,
and indexed sequential files will be sdpporfed. Only a brief overview of structured files is

described here.

Structured Files

Structured f'i_les are sequential fileé consisting of variable length records, with EBCDIC blanks
compressed out, trailing blanks removed, and format bytes and sequence numbers added.
Structured files are completely device independent, and operate with tape, disc, CRAM, RAD,
remote terminals, and (through symbionts) fo unit record equipment. Structured files really are
designed for source input files and listing output files, but can be used for any other sequenﬁcﬂ

byte string operations desired, if a logical record format is convenient.

A set of Data Management routines are provided in the system library to read, write, and
position logical records wxfhm a structured (sequential) file. A decision is made in fhese
routines to acquire buffer space if necessary, fo block to File Management page operahons.
Or if the current file assignment is to a remote conversational terminal, these Data Manage-
ment routines will call the Terminal Control System fo read or write a record through the
communications system, Whenever a physical 1/O transfer is involved (as when aiblocking
buffer is full or empty) an explicit WAIT is issued by these routines on behalf of the task on the
file being used. -

DEVICE MANAGEMENT

All 1/O operations and all 1/O interrupts go through the 1/O Control System, or IOCS.
IOCS consists of routines and tables necessary-to allocate 1/O devices, fo issue Start 1/0
operations(SIO's), and to answer 1/O interrupts. 10OCS resides in System Virtual N\e.mory
as part of the Resident Monitor, A primary design concept for IOCS is uniformify --all
calls on TOCS look the same, regardless of the caller; and only IOCS is responsible for
manipulating the tables under its corﬁrol. ~User tasks cannot call IOCS directly butﬁalways
..c:c;ll File Manclgemenf, IOEX, or a Symbiont, (IOEX is an MPM immediate service routine
that handles device dependent 1/O requests and performs argument consistency checks,) |
File Management is used for all device independent /O operations. Symbionts are used fo

drive unit record equipment, Then File Management, IOEX, or the Symbionts will prepare

an 1/O Event Control Block (ECB) and call IOCS,

All calls to IOCS refer to devices by a Logical Device Number (LDN). No one in the
system except IOCS actually knows the physical device numbers for devices, and these
are kept in a fixed table in IOCS called the System Device Inventory. This permits device
reassignment in case of hardware error, It also makes all 1/O operations very configuration
independent and easy to use, A user merely asks for a magnetic tape, for example, and ‘
never knows which tape drive he is using. Thus, the compufer operators never need to
change tape unit numbers, and the system 'ca]n maintain counters and statistics on tape units
or disc drives. All file catalogs and file direc'fories refer to "reel™ number or "pack™ number,
and only IOCS knows which reel is on which physical drive. Thus, a reconfiguration does

not affect removable disc pack assignments or catalogs.

The tables for IOCS are shown in Figure D1, The System Device Inventory is the central
table. It is indexed, as described above, by Logical Device Number. This System Device
Inventory is created at system load fime (not system generation) from information supplied on
configuration cards or from previous history. It can be modified by éysfem control commands
later, if necessary, or by reconfiguration routines. It contains one entry per /O device in
the system, Each entry contains the actual (physical) device number, an alternate device
number (for'reconfiguroﬁon), and pointers to the Device Controller Table and to the Device

Type Table,

-D2-

The Device Type Table is mostly fixed af assembly time and can be modified at sysgen,

system lodd, or durmg execution, There is one entry in this table for each device type

in the system. Each enfry contains device type name, standard 1/O Order Bytes, standard
retry counts, standard failure thresholds, and ID's for error and fculure tasks for this type of
device.

The-Device Controller Table contains one entry per logical 1/O subchannel in the system.

(That i lS, a dual-access confroller is one logical channel and one entry.) The Device
Controller Table contains physncql subchannel activity status for single or multi-unit device
controllers, and for both subchannels if a dual-access controller. This table is allocated at

system load time and is the most dynamic of the IOCS tables. All 1/O requests are queued
from the appropriate entry in the Device Controller Table. Actually, the queue entries are

the ECB's that were given to IOCS on the 1/O request. These ECB's are in a doubly linked

list, with one link from the proper 1/O subchannel and the other (not shown) from the re-
questing task entry in the System Task Inventory (which controls tasks), Thus, IOCS uses

the general ECB facility to handle queues for all requests, This makes it easy for IOCS to

"post” completion of an /O operahon to the requesting task -- it uses i‘he normal ECB

posting routine. . If there is an 1/O error, the ECB is given fo the proper MPM error analysis
task, and all request and status information is carried along in the ECB. Eventually, if the -
user task had requested pseudo interrupt confrol at 1/O completion, this same ECB is attached
to the task unsolicited event list (and Thus is doubly linked to its requesting task). This scheme
means that 1OCS does not need to provide within its own tables for variable length 1/O queue :
‘entries, as in most systems -- the ECB's and a doubly linked (fhreaded) list approach removes'.
this necessity. Also, if a task wants status on any of its I/O requests or if a task must be aborted
for any reason, the latest status on all ECB's for this task can be found byfollowung the chain
from the task in que;ﬁon. ‘Then queued ECB's can be removed from the subchannel queue, if |
~ necessary. | Furthermore,‘ all of the user task can be swapped ouf’ of memory, before 1/O com- :

pletes, except the ECB's and the actual pag‘es where 1/O is still in progress. (Without swapping,

_D3-
the ECB's would not be as large. But larger ECB's mean smaller memory requirements for
task residence during /O operations.) - -

The 1/O Processor Table, or IOPT, contains status, error, and configuration information
on an I/O processor. There is one entry in this table per I/O processor in the system.. .

This is normally used only for errors and reconfiguration,

IOP

Table
Device
Controller
Table
System .]
Device A
Inventory ‘
. T
! ECB \
! |
g 7 » Co . N [e 4
LON 7 S—— Device Type
‘ Table
CT T
! ECB :
.

FIGURE D1: IOCS Tables |

HIGH AVAILABILITY

Goals

High availability is defined for MPM as providing "nearly™ continuous access to computing

services for users, This means that only very short and very infrequent interruptions are
permiﬂed when users are attempting to access the system. It is not a goal of the system to

~ avoid all breaks in service, or to never require user restarts, However, part of the goal -

. ._o'f high availability does imply absolute pro’reéfion for data files; that is, once a user has
enfniusfed his files to the system, the system will take whatever steps are necessary to insure |

that these files are never lost or destroyed -~ beyond a "backup" point under the user's control.

This goal of high availability is occomplished by adherence to four basic principles:

. All error and failure detection and recovery is on-line and uses all the power of

the converschonal hme-sharmg services of N\PM

. A complete and precise audit trail is provided for system programmers or customer

engineers of all errors, failures, and reconfigurations of the system, °

. Alternate paths are provided to all peripherals through a combination of Slgma 9
hardware and MPM software techniques to permit automatic or seml—cxufomahc

reconfiguration after failures.

. All references to hardware -~ whether memory or peripherals -~ are logical rather
than absolute, so that user and system programs can still continue after hardware

failures or reconfigurations.

On-Line Detechon

Much of the error cnd fallure detection is imbedded in File Management or in 10CS, but
some parts are separate; and all parts are on-line. There are really the followmg distinct

parts to MPM error and failure defeci‘lon

. 1/O interrupt general error analys»i‘s' rouﬁnes’

. Swapping RAD error analysis routines ‘

. File Management error analysis routines

. Specific device-dependent error and failure analysis tasks

. Examiner Symbiont Process (ESP)

-H2-

. System On-Line Diagnostic (SOLD)
. Watchdog timer trap |
. . Parity fault trap -

c e Noﬁ-allowed op‘erdﬁon trap
. Se.quencé fault trap

. Power On/Qff interrupt

. Mémory fault ini‘errup_f

. Processor fault interrupt
. Software detected faults
. Software timeout routines

The tasks, referenced/above, are non-resident. (This includes ESP and SOLD,) All /0
general error analysis routines and all trap and interrupt routines are resident and react
immediately to hardware detected errors or failures. (An error is defined as an invalid
condition that has not resulted in loss of data; that i is, an error is recoverable, A failure
is unrecoverable and is always much more serious.) MPM, unlike many systems, operates

on the premise that hardware failures are imminent but are never a cause for affecting more

than one (or a few) of the operations in progress; that is, they are deliberately localized.

Mest of the above routines do the "obvious” thing when traps or infefrupfs occur. The
Exammer Symbiont Process is in effect a software preventative maintenance task that runs
at a low priority under MPM and checks all possible hardware registers and software tables
for consistency, and forces reconflgurahon before failures occur, The System On-Line
Diagnostic runs as a conversational job, with customer engineers as Usérs, to exercise,
diagnose, or repair peripherals or memory banks that are marginal or that have failed.
Thus, the system can continue to operate; and tapes, discs, or unit record equipment can |
be repaired on-line. The on-line detection and repair tends to significantly reduce MTIR

(mean time to repair) which means higher availability of the system fo users.

Audit Trail v
B .) 1
Since a large configuration has many possible configuration alternatives and many possible

sources of errors or failures, MPM provides a means of leaving a visible audit trail for chunges.

~H3-

Al changes to the configuration and all errors and failures, as they occur, result in log

entries to the MPM error log. The error log is printed on-line on a dedicated keyboard/

printer for all errors above a preset- severity threshold, in a short format, A longer format

‘of the error log, with simple English messages, for all errors or failures, is printed (on demand)
by a special logging symbiont. All error and failure analysis routines in MPM call this central

'~ logging routine with message codes and severity level indicators, Thus, in the event of a crash,

' é-summary hisfory is immediately available and a more detailed history is available on request.
Since this error file uses normal file management services, the logging symbiont can print this

file on either a local or a remote conversational terminal or a local or remote line printer,

Reconfigdrafion

In every configuration that has the proper high reliability options, an altemate data path is.
provided to every device. This takes the form of dual access controllers on separate IOP s
or peripheral switches to switch devices automatically, if an 1OP fails. The software can

select this alternate path cufomchcqlly if there is a failure in the primary path to the device.

If the device itself fails, there are two possible reconfiguration options: - o

Software partitioning - the device is unavailable for normal allocation but can be

accessed by ESP or SOLD or other pnvnleged dxagnoshcs

Hardware parhhomng - the device is switched out of the system alfogefher, poss:bly

to an off-line maintenance configuration if one is available,

Loglcal References

One of the design lmpllcahons for all of MPM that results from the requirement for high
availabilify is the need to make all hardware references on a logical rather than a physical
basis. Then,i in the event of a hardware failure, the user program can be directed to use an
alternate device by merely changing an entry inside MPM, without the user being aware of

the change. Some of the techniques to accomplish this are described under Memory Managemenf
File Management, and Device Management (as with the Logical Device Numbers). Mcny of
these techniques are also.,useful in a multi-programming system, for ease of allocation. But

the requirements for allocation flexibility extend to all of MPM itself as well as user programs,

-H4-

Thus, without the Sigma 9 hardware features such as the MPCU, the relocatable CPU
homespace, the hardware map, and fl’exible,memory bdnk and device assignments, this
would be an impossible goal, For this reason, the MPCU is required even in a single
CPU configuration. For this reason all of MPM itself runs mapped or under a single
extension field in real-extended mémoryv. Thus, loss of any CPU or memory bank or
any peripheral, as long as minimum system capacity remains, will not result in stopping
ﬂfe system (after at most a slight pause for reconfiguration if the device or memory was
critical), For this reason also all of MPM uses File Management for all data files, to "
permit full file reassignment (through centralized facilities in file management) in case
of failures. (Thus, symbionts under I_f\PM always use normal File Management, even for

error logs.)

